Texture Generation Using a Graph Generative Adversarial Network and Differentiable Rendering

نویسندگان

چکیده

Novel photo-realistic texture synthesis is an important task for generating novel scenes, including asset generation 3D simulations. However, to date, these methods predominantly generate textured objects in 2D space. If we rely on object generation, then need make a computationally expensive forward pass each time change the camera viewpoint or lighting. Recent work that can textures requires component segmentation acquire. In this work, present conditional generative architecture call graph adversarial network (GGAN) by learning information unsupervised way. framework, do not whenever lighting changes, and part training, yet model generalize unseen meshes appropriate textures. We compare approach against state-of-the-art demonstrate GGAN obtains significantly better quality (according Fréchet inception distance). release our source code as open ( https://github.com/ml4ai/ggan ).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adversarial Examples Generation and Defense Based on Generative Adversarial Network

We propose a novel generative adversarial network to generate and defend adversarial examples for deep neural networks (DNN). The adversarial stability of a network D is improved by training alternatively with an additional network G. Our experiment is carried out on MNIST, and the adversarial examples are generated in an efficient way compared with wildly-used gradient based methods. After tra...

متن کامل

Tag Disentangled Generative Adversarial Network for Object Image Re-rendering

In this paper, we propose a principled Tag Disentangled Generative Adversarial Networks (TDGAN) for re-rendering new images for the object of interest from a single image of it by specifying multiple scene properties (such as viewpoint, illumination, expression, etc.). The whole framework consists of a disentangling network, a generative network, a tag mapping net, and a discriminative network,...

متن کامل

Text Generation using Generative Adversarial Training

Generative models reduce the need of acquiring laborious labeling for the dataset. Text generation techniques can be applied for improving language models, machine translation, summarization, and captioning. This project experiments on different recurrent neural network models to build generative adversarial networks for generating texts from noise. The trained generator is capable of producing...

متن کامل

Wasserstein Generative Adversarial Network

Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. Ther...

متن کامل

Controllable Generative Adversarial Network

Although it is recently introduced, in last few years, generative adversarial network (GAN) has been shown many promising results to generate realistic samples. However, it is hardly able to control generated samples since input variables for a generator are from a random distribution. Some attempts have been made to control generated samples from GAN, but they have shown moderate results. Furt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2023

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-25825-1_28